DP-203T00: Data Engineering On Microsoft Azure
Discover the Microsoft Certified: Azure Data Engineer Associate credential.
In today's fast-paced business environment, agility necessitates cross-organizational data collaboration, and data engineers are critical to a company's success. These experts understand that cloud analytics is a crucial first step toward a more resilient business transformation, and they spend their days unlocking data and putting it to work for breakthrough insights and value. Check out this certification course if you have these skills and wish to prove them.
Explore our top picks for Microsoft Azure certification courses for 2023.
Training Duration: 4 Days
- Certificate Of Completion Available
- Group Private Class
- VILT Class Available
- SBL-Khas Claimable
In this DP-203T00: Data Engineering On Microsoft Azure course, the student will learn about the data engineering as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies.
Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how to create a real-time analytical system to create real-time analytical solutions.
After completing this course, students will be able to:
- Explore compute and storage options for data engineering workloads in Azure
- Run interactive queries using serverless SQL pools
- Perform data Exploration and Transformation in Azure Databricks
- Explore, transform, and load data into the Data Warehouse using Apache Spark
- Ingest and load Data into the Data Warehouse
- Transform Data with Azure Data Factory or Azure Synapse Pipelines
- Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines
- Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
- Perform end-to-end security with Azure Synapse Analytics
- Perform real-time Stream Processing with Stream Analytics
- Create a Stream Processing Solution with Event Hubs and Azure Databricks
Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.
Specifically completing:
The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.
Module 1: Explore compute and storage options for data engineering workloads
This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration.Lessons
- Introduction to Azure Synapse Analytics
- Describe Azure Databricks
- Introduction to Azure Data Lake storage
- Describe Delta Lake architecture
- Work with data streams by using Azure Stream Analytics
Lab : Explore compute and storage options for data engineering workloads
- Combine streaming and batch processing with a single pipeline
- Organize the data lake into levels of file transformation
- Index data lake storage for query and workload acceleration
After completing this module, students will be able to:
- Describe Azure Synapse Analytics
- Describe Azure Databricks
- Describe Azure Data Lake storage
- Describe Delta Lake architecture
- Describe Azure Stream Analytics
Module 2: Run interactive queries using Azure Synapse Analytics serverless SQL pools
In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs).Lessons
- Explore Azure Synapse serverless SQL pools capabilities
- Query data in the lake using Azure Synapse serverless SQL pools
- Create metadata objects in Azure Synapse serverless SQL pools
- Secure data and manage users in Azure Synapse serverless SQL pools
Lab : Run interactive queries using serverless SQL pools
- Query Parquet data with serverless SQL pools
- Create external tables for Parquet and CSV files
- Create views with serverless SQL pools
- Secure access to data in a data lake when using serverless SQL pools
- Configure data lake security using Role-Based Access Control (RBAC) and Access Control List
After completing this module, students will be able to:
- Understand Azure Synapse serverless SQL pools capabilities
- Query data in the lake using Azure Synapse serverless SQL pools
- Create metadata objects in Azure Synapse serverless SQL pools
- Secure data and manage users in Azure Synapse serverless SQL pools
Module 3: Data exploration and transformation in Azure Databricks
This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data.Lessons
- Describe Azure Databricks
- Read and write data in Azure Databricks
- Work with DataFrames in Azure Databricks
- Work with DataFrames advanced methods in Azure Databricks
Lab : Data Exploration and Transformation in Azure Databricks
- Use DataFrames in Azure Databricks to explore and filter data
- Cache a DataFrame for faster subsequent queries
- Remove duplicate data
- Manipulate date/time values
- Remove and rename DataFrame columns
- Aggregate data stored in a DataFrame
After completing this module, students will be able to:
- Describe Azure Databricks
- Read and write data in Azure Databricks
- Work with DataFrames in Azure Databricks
- Work with DataFrames advanced methods in Azure Databricks
Module 4: Explore, transform, and load data into the Data Warehouse using Apache Spark
This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool.Lessons
- Understand big data engineering with Apache Spark in Azure Synapse Analytics
- Ingest data with Apache Spark notebooks in Azure Synapse Analytics
- Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
- Integrate SQL and Apache Spark pools in Azure Synapse Analytics
Lab : Explore, transform, and load data into the Data Warehouse using Apache Spark
- Perform Data Exploration in Synapse Studio
- Ingest data with Spark notebooks in Azure Synapse Analytics
- Transform data with DataFrames in Spark pools in Azure Synapse Analytics
- Integrate SQL and Spark pools in Azure Synapse Analytics
After completing this module, students will be able to:
- Describe big data engineering with Apache Spark in Azure Synapse Analytics
- Ingest data with Apache Spark notebooks in Azure Synapse Analytics
- Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
- Integrate SQL and Apache Spark pools in Azure Synapse Analytics
Module 5: Ingest and load data into the data warehouse
This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion.Lessons
- Use data loading best practices in Azure Synapse Analytics
- Petabyte-scale ingestion with Azure Data Factory
Lab : Ingest and load Data into the Data Warehouse
- Perform petabyte-scale ingestion with Azure Synapse Pipelines
- Import data with PolyBase and COPY using T-SQL
- Use data loading best practices in Azure Synapse Analytics
After completing this module, students will be able to:
- Use data loading best practices in Azure Synapse Analytics
- Petabyte-scale ingestion with Azure Data Factory
Module 6: Transform data with Azure Data Factory or Azure Synapse Pipelines
This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks.Lessons
- Data integration with Azure Data Factory or Azure Synapse Pipelines
- Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines
Lab : Transform Data with Azure Data Factory or Azure Synapse Pipelines
- Execute code-free transformations at scale with Azure Synapse Pipelines
- Create data pipeline to import poorly formatted CSV files
- Create Mapping Data Flows
After completing this module, students will be able to:
- Perform data integration with Azure Data Factory
- Perform code-free transformation at scale with Azure Data Factory
Module 7: Orchestrate data movement and transformation in Azure Synapse Pipelines
In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines.Lessons
- Orchestrate data movement and transformation in Azure Data Factory
Lab : Orchestrate data movement and transformation in Azure Synapse Pipelines
- Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines
After completing this module, students will be able to:
- Orchestrate data movement and transformation in Azure Synapse Pipelines
Module 8: End-to-end security with Azure Synapse Analytics
In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools.Lessons
- Secure a data warehouse in Azure Synapse Analytics
- Configure and manage secrets in Azure Key Vault
- Implement compliance controls for sensitive data
Lab : End-to-end security with Azure Synapse Analytics
- Secure Azure Synapse Analytics supporting infrastructure
- Secure the Azure Synapse Analytics workspace and managed services
- Secure Azure Synapse Analytics workspace data
After completing this module, students will be able to:
- Secure a data warehouse in Azure Synapse Analytics
- Configure and manage secrets in Azure Key Vault
- Implement compliance controls for sensitive data
Module 9: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless.Lessons
- Design hybrid transactional and analytical processing using Azure Synapse Analytics
- Configure Azure Synapse Link with Azure Cosmos DB
- Query Azure Cosmos DB with Apache Spark pools
- Query Azure Cosmos DB with serverless SQL pools
Lab : Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
- Configure Azure Synapse Link with Azure Cosmos DB
- Query Azure Cosmos DB with Apache Spark for Synapse Analytics
- Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics
After completing this module, students will be able to:
- Design hybrid transactional and analytical processing using Azure Synapse Analytics
- Configure Azure Synapse Link with Azure Cosmos DB
- Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics
- Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics
Module 10: Real-time Stream Processing with Stream Analytics
In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput.Lessons
- Enable reliable messaging for Big Data applications using Azure Event Hubs
- Work with data streams by using Azure Stream Analytics
- Ingest data streams with Azure Stream Analytics
Lab : Real-time Stream Processing with Stream Analytics
- Use Stream Analytics to process real-time data from Event Hubs
- Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics
- Scale the Azure Stream Analytics job to increase throughput through partitioning
- Repartition the stream input to optimize parallelization
After completing this module, students will be able to:
- Enable reliable messaging for Big Data applications using Azure Event Hubs
- Work with data streams by using Azure Stream Analytics
- Ingest data streams with Azure Stream Analytics
Module 11: Create a Stream Processing Solution with Event Hubs and Azure Databricks
In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams.Lessons
- Process streaming data with Azure Databricks structured streaming
Lab : Create a Stream Processing Solution with Event Hubs and Azure Databricks
- Explore key features and uses of Structured Streaming
- Stream data from a file and write it out to a distributed file system
- Use sliding windows to aggregate over chunks of data rather than all data
- Apply watermarking to remove stale data
- Connect to Event Hubs read and write streams
After completing this module, students will be able to:
- Process streaming data with Azure Databricks structured streaming
Propel your IT career to new heights with Microsoft certifications.
According to Pearson VUE's 2021 Value of IT Certification Survey, investing in Microsoft Certifications can accelerate your professional growth, enhance your skills, and boost your earning potential.
Join the thousands of IT professionals who have unlocked a world of opportunities by validating their expertise in cutting-edge Microsoft technologies with these recommended role-based certifications:
DP-100T01: Designing And Implementing A Data Science Solution On Azure
DP-300T00: Administering Relational Databases On Microsoft Azure
This DP-300T00: Administering Relational Databases On Microsoft Azure course provides students with the knowledge and skills to administer a SQL Server database infrastructure for cloud, on-premises and hybrid relational databases and who work with the Microsoft PaaS relational database offerings.
DP-420T00: Designing & Implementing Cloud-Native Applications Using Cosmos DB
This DP-420T00: Designing & Implementing Cloud-Native Applications Using Cosmos DB course teaches developers how to create application using the SQL API and SDK for Azure Cosmos DB.DP-500T00: Azure Enterprise Data Analyst Associate
This DP-500T00: Azure Enterprise Data Analyst Associate course covers methods and practices for performing advanced data analytics at scale.
The DP-203T00: Data Engineering on Microsoft Azure course prepares learners for the Microsoft Certified: Azure Data Engineer Associate certification.
The DP-203 exam measures your ability to accomplish the following technical tasks: design and implement data storage; design and develop data processing; design and implement data security; and monitor and optimize data storage and data processing.
Skills measured
- Design and implement data storage (40-45%)
- Design and develop data processing (25-30%)
- Design and implement data security (10-15%)
- Monitor and optimize data storage and data processing (10-15%)
Are Microsoft certifications worth it?
In today's fast-paced and highly competitive world of technology, it's more important than ever to stay ahead of the curve and differentiate yourself as a skilled professional.
Microsoft certifications are globally recognized, industry-standard credentials that showcase your expertise in various Microsoft technologies, making them a worthwhile investment in your career growth. By obtaining a Microsoft certification, you're not only validating your skills and knowledge, but also demonstrating your commitment to continuous learning and staying current with the latest industry trends.
Microsoft certifications cater to a wide range of roles, including developers, administrators, data professionals, and IT managers, providing a versatile pathway to career advancement. As organizations increasingly rely on Microsoft technologies such as Azure, Office 365, and Dynamics 365, the demand for certified professionals continues to grow. A Microsoft certification not only improves your employability, but also enhances your earning potential and credibility within your field.
Additionally, as a certified Microsoft professional, you gain access to exclusive resources, networking opportunities, and events, further elevating your career. Invest in your future by pursuing Microsoft certifications and unlock a world of opportunities, growth, and success in the ever-evolving technology landscape.
Why learn Azure?
In today's digital landscape, cloud computing has become an essential part of every organization's IT strategy, and Microsoft Azure stands at the forefront of this transformation. As one of the leading cloud platforms, Azure offers a wide range of services and tools, making it a highly sought-after skill for IT professionals across various industries.
By learning Azure, you're not only staying current with the latest developments in cloud technology but also empowering yourself to work on cutting-edge projects, improve your problem-solving capabilities, and drive innovation within your organization.
Azure's extensive range of services, such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), provides a comprehensive and flexible environment for businesses to scale and adapt to evolving market demands.
As an Azure professional, you'll be equipped to deploy, manage, and maintain cloud infrastructure, ensuring seamless integration and optimal performance of critical business applications. Learning Azure not only enhances your career prospects but also significantly increases your earning potential, as certified Azure professionals are highly valued in the job market.
Embrace the power of cloud computing and take your career to new heights by mastering Microsoft Azure, and unlock a world of new possibilities and opportunities in this exciting, ever-evolving field.